Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
1.
medRxiv ; 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38559166

RESUMO

In Alzheimer's disease (AD), the most common cause of dementia, females have higher prevalence and faster progression, but sex-specific molecular findings in AD are limited. Here, we comprehensively examined and validated 7,006 aptamers targeting 6,162 proteins in cerebral spinal fluid (CSF) from 2,077 amyloid/tau positive cases and controls to identify sex-specific proteomic signatures of AD. In discovery (N=1,766), we identified 330 male-specific and 121 female-specific proteomic alternations in CSF (FDR <0.05). These sex-specific proteins strongly predicted amyloid/tau positivity (AUC=0.98 in males; 0.99 in females), significantly higher than those with age, sex, and APOE-ε4 (AUC=0.85). The identified sex-specific proteins were well validated (r≥0.5) in the Stanford study (N=108) and Emory study (N=148). Biological follow-up of these proteins led to sex differences in cell-type specificity, pathways, interaction networks, and drug targets. Male-specific proteins, enriched in astrocytes and oligodendrocytes, were involved in postsynaptic and axon-genesis. The male network exhibited direct connections among 152 proteins and highlighted PTEN, NOTCH1, FYN, and MAPK8 as hubs. Drug target suggested melatonin (used for sleep-wake cycle regulation), nabumetone (used for pain), daunorubicin, and verteporfin for treating AD males. In contrast, female-specific proteins, enriched in neurons, were involved in phosphoserine residue binding including cytokine activities. The female network exhibits strong connections among 51 proteins and highlighted JUN and 14-3-3 proteins (YWHAG and YWHAZ) as hubs. Drug target suggested biperiden (for muscle control of Parkinson's disease), nimodipine (for cerebral vasospasm), quinostatin and ethaverine for treating AD females. Together, our findings provide mechanistic understanding of sex differences for AD risk and insights into clinically translatable interventions.

2.
NPJ Parkinsons Dis ; 10(1): 72, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553467

RESUMO

Bi-allelic pathogenic variants in PRKN are the most common cause of autosomal recessive Parkinson's disease (PD). 647 patients with PRKN-PD were included in this international study. The pathogenic variants present were characterised and investigated for their effect on phenotype. Clinical features and progression of PRKN-PD was also assessed. Among 133 variants in index cases (n = 582), there were 58 (43.6%) structural variants, 34 (25.6%) missense, 20 (15%) frameshift, 10 splice site (7.5%%), 9 (6.8%) nonsense and 2 (1.5%) indels. The most frequent variant overall was an exon 3 deletion (n = 145, 12.3%), followed by the p.R275W substitution (n = 117, 10%). Exon3, RING0 protein domain and the ubiquitin-like protein domain were mutational hotspots with 31%, 35.4% and 31.7% of index cases presenting mutations in these regions respectively. The presence of a frameshift or structural variant was associated with a 3.4 ± 1.6 years or a 4.7 ± 1.6 years earlier age at onset of PRKN-PD respectively (p < 0.05). Furthermore, variants located in the N-terminus of the protein, a region enriched with frameshift variants, were associated with an earlier age at onset. The phenotype of PRKN-PD was characterised by slow motor progression, preserved cognition, an excellent motor response to levodopa therapy and later development of motor complications compared to early-onset PD. Non-motor symptoms were however common in PRKN-PD. Our findings on the relationship between the type of variant in PRKN and the phenotype of the disease may have implications for both genetic counselling and the design of precision clinical trials.

3.
medRxiv ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38464214

RESUMO

Importance: The chromosome 17q21.31 region, containing a 900 Kb inversion that defines H1 and H2 haplotypes, represents the strongest genetic risk locus in progressive supranuclear palsy (PSP). In addition to H1 and H2, various structural forms of 17q21.31, characterized by the copy number of α, ß, and γ duplications, have been identified. However, the specific effect of each structural form on the risk of PSP has never been evaluated in a large cohort study. Objective: To assess the association of different structural forms of 17q.21.31, defined by the copy numbers of α, ß, and γ duplications, with the risk of PSP and MAPT sub-haplotypes. Design setting and participants: Utilizing whole genome sequencing data of 1,684 (1,386 autopsy confirmed) individuals with PSP and 2,392 control subjects, a case-control study was conducted to investigate the association of copy numbers of α, ß, and γ duplications and structural forms of 17q21.31 with the risk of PSP. All study subjects were selected from the Alzheimer's Disease Sequencing Project (ADSP) Umbrella NG00067.v7. Data were analyzed between March 2022 and November 2023. Main outcomes and measures: The main outcomes were the risk (odds ratios [ORs]) for PSP with 95% CIs. Risks for PSP were evaluated by logistic regression models. Results: The copy numbers of α and ß were associated with the risk of PSP only due to their correlation with H1 and H2, while the copy number of γ was independently associated with the increased risk of PSP. Each additional duplication of γ was associated with 1.10 (95% CI, 1.04-1.17; P = 0.0018) fold of increased risk of PSP when conditioning H1 and H2. For the H1 haplotype, addition γ duplications displayed a higher odds ratio for PSP: the odds ratio increases from 1.21 (95%CI 1.10-1.33, P = 5.47 × 10-5) for H1ß1γ1 to 1.29 (95%CI 1.16-1.43, P = 1.35 × 10-6) for H1ß1γ2, 1.45 (95%CI 1.27-1.65, P = 3.94 × 10-8) for H1ß1γ3, and 1.57 (95%CI 1.10-2.26, P = 1.35 × 10-2) for H1ß1γ4. Moreover, H1ß1γ3 is in linkage disequilibrium with H1c (R2 = 0.31), a widely recognized MAPT sub-haplotype associated with increased risk of PSP. The proportion of MAPT sub-haplotypes associated with increased risk of PSP (i.e., H1c, H1d, H1g, H1o, and H1h) increased from 34% in H1ß1γ1 to 77% in H1ß1γ4. Conclusions and relevance: This study revealed that the copy number of γ was associated with the risk of PSP independently from H1 and H2. The H1 haplotype with more γ duplications showed a higher odds ratio for PSP and were associated with MAPT sub-haplotypes with increased risk of PSP. These findings expand our understanding of how the complex structure at 17q21.31 affect the risk of PSP.

4.
Brain Pathol ; : e13250, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418081

RESUMO

Previous studies have suggested a relationship between the number of CAG triplet repeats in the HTT gene and neurodegenerative diseases not related to Huntington's disease (HD). This study seeks to investigate whether the number of CAG repeats of HTT is associated with the risk of developing certain tauopathies and its influence as a modulator of the clinical and neuropathological phenotype. Additionally, it aims to evaluate the potential of polyglutamine staining as a neuropathological screening. We genotyped the HTT gene CAG repeat number and APOE-ℰ isoforms in a cohort of patients with neuropathological diagnoses of tauopathies (n=588), including 34 corticobasal degeneration (CBD), 98 progressive supranuclear palsy (PSP) and 456 Alzheimer's disease (AD). Furthermore, we genotyped a control group of 1070 patients, of whom 44 were neuropathologic controls. We identified significant differences in the number of patients with pathological HTT expansions in the CBD group (2.7%) and PSP group (3.2%) compared to control subjects (0.2%). A significant increase in the size of the HTT CAG repeats was found in the AD compared to the control group, influenced by the presence of the Apoliprotein E (APOE)-ℰ4 isoform. Post-mortem assessments uncovered tauopathy pathology with positive polyglutamine aggregates, with a slight predominance in the neostriatum for PSP and CBD cases and somewhat greater limbic involvement in the AD case. Our results indicated a link between HTT CAG repeat expansion with other non-HD pathology, suggesting they could share common neurodegenerative pathways. These findings support that genetic or histological screening for HTT repeat expansions should be considered in tauopathies.

5.
Res Sq ; 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38410465

RESUMO

Changes in Amyloid-ß (A), hyperphosphorylated Tau (T) in brain and cerebrospinal fluid (CSF) precedes AD symptoms, making CSF proteome a potential avenue to understand the pathophysiology and facilitate reliable diagnostics and therapies. Using the AT framework and a three-stage study design (discovery, replication, and meta-analysis), we identified 2,173 proteins dysregulated in AD, that were further validated in a third totally independent cohort. Machine learning was implemented to create and validate highly accurate and replicable (AUC>0.90) models that predict AD biomarker positivity and clinical status. These models can also identify people that will convert to AD and those AD cases with faster progression. The associated proteins cluster in four different protein pseudo-trajectories groups spanning the AD continuum and were enrichment in specific pathways including neuronal death, apoptosis and tau phosphorylation (early stages), microglia dysregulation and endolysosomal dysfuncton(mid-stages), brain plasticity and longevity (mid-stages) and late microglia-neuron crosstalk (late stages).

6.
medRxiv ; 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38260583

RESUMO

Background: To date, there is no high throughput proteomic study in the context of Autosomal Dominant Alzheimer's disease (ADAD). Here, we aimed to characterize early CSF proteome changes in ADAD and leverage them as potential biomarkers for disease monitoring and therapeutic strategies. Methods: We utilized Somascan® 7K assay to quantify protein levels in the CSF from 291 mutation carriers (MCs) and 185 non-carriers (NCs). We employed a multi-layer regression model to identify proteins with different pseudo-trajectories between MCs and NCs. We replicated the results using publicly available ADAD datasets as well as proteomic data from sporadic Alzheimer's disease (sAD). To biologically contextualize the results, we performed network and pathway enrichment analyses. Machine learning was applied to create and validate predictive models. Findings: We identified 125 proteins with significantly different pseudo-trajectories between MCs and NCs. Twelve proteins showed changes even before the traditional AD biomarkers (Aß42, tau, ptau). These 125 proteins belong to three different modules that are associated with age at onset: 1) early stage module associated with stress response, glutamate metabolism, and mitochondria damage; 2) the middle stage module, enriched in neuronal death and apoptosis; and 3) the presymptomatic stage module was characterized by changes in microglia, and cell-to-cell communication processes, indicating an attempt of rebuilding and establishing new connections to maintain functionality. Machine learning identified a subset of nine proteins that can differentiate MCs from NCs better than traditional AD biomarkers (AUC>0.89). Interpretation: Our findings comprehensively described early proteomic changes associated with ADAD and captured specific biological processes that happen in the early phases of the disease, fifteen to five years before clinical onset. We identified a small subset of proteins with the potentials to become therapy-monitoring biomarkers of ADAD MCs. Funding: Proteomic data generation was supported by NIH: RF1AG044546.

7.
medRxiv ; 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38234807

RESUMO

Background: Progressive supranuclear palsy (PSP) is a rare neurodegenerative disease characterized by the accumulation of aggregated tau proteins in astrocytes, neurons, and oligodendrocytes. Previous genome-wide association studies for PSP were based on genotype array, therefore, were inadequate for the analysis of rare variants as well as larger mutations, such as small insertions/deletions (indels) and structural variants (SVs). Method: In this study, we performed whole genome sequencing (WGS) and conducted association analysis for single nucleotide variants (SNVs), indels, and SVs, in a cohort of 1,718 cases and 2,944 controls of European ancestry. Of the 1,718 PSP individuals, 1,441 were autopsy-confirmed and 277 were clinically diagnosed. Results: Our analysis of common SNVs and indels confirmed known genetic loci at MAPT, MOBP, STX6, SLCO1A2, DUSP10, and SP1, and further uncovered novel signals in APOE, FCHO1/MAP1S, KIF13A, TRIM24, TNXB, and ELOVL1. Notably, in contrast to Alzheimer's disease (AD), we observed the APOE ε2 allele to be the risk allele in PSP. Analysis of rare SNVs and indels identified significant association in ZNF592 and further gene network analysis identified a module of neuronal genes dysregulated in PSP. Moreover, seven common SVs associated with PSP were observed in the H1/H2 haplotype region (17q21.31) and other loci, including IGH, PCMT1, CYP2A13, and SMCP. In the H1/H2 haplotype region, there is a burden of rare deletions and duplications (P = 6.73×10-3) in PSP. Conclusions: Through WGS, we significantly enhanced our understanding of the genetic basis of PSP, providing new targets for exploring disease mechanisms and therapeutic interventions.

8.
Mol Neurodegener ; 19(1): 1, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172904

RESUMO

Triggering receptor expressed on myeloid cells 2 (TREM2) plays a critical role in microglial activation, survival, and apoptosis, as well as in Alzheimer's disease (AD) pathogenesis. We previously reported the MS4A locus as a key modulator for soluble TREM2 (sTREM2) in cerebrospinal fluid (CSF). To identify additional novel genetic modifiers of sTREM2, we performed the largest genome-wide association study (GWAS) and identified four loci for CSF sTREM2 in 3,350 individuals of European ancestry. Through multi-ethnic fine mapping, we identified two independent missense variants (p.M178V in MS4A4A and p.A112T in MS4A6A) that drive the association in MS4A locus and showed an epistatic effect for sTREM2 levels and AD risk. The novel TREM2 locus on chr 6 contains two rare missense variants (rs75932628 p.R47H, P=7.16×10-19; rs142232675 p.D87N, P=2.71×10-10) associated with sTREM2 and AD risk. The third novel locus in the TGFBR2 and RBMS3 gene region (rs73823326, P=3.86×10-9) included a regulatory variant with a microglia-specific chromatin loop for the promoter of TGFBR2. Using cell-based assays we demonstrate that overexpression and knock-down of TGFBR2, but not RBMS3, leads to significant changes of sTREM2. The last novel locus is located on the APOE region (rs11666329, P=2.52×10-8), but we demonstrated that this signal was independent of APOE genotype. This signal colocalized with cis-eQTL of NECTIN2 in the brain cortex and cis-pQTL of NECTIN2 in CSF. Overexpression of NECTIN2 led to an increase of sTREM2 supporting the genetic findings. To our knowledge, this is the largest study to date aimed at identifying genetic modifiers of CSF sTREM2. This study provided novel insights into the MS4A and TREM2 loci, two well-known AD risk genes, and identified TGFBR2 and NECTIN2 as additional modulators involved in TREM2 biology.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/patologia , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Estudo de Associação Genômica Ampla , Microglia/patologia , Apolipoproteínas E/genética , Biomarcadores/líquido cefalorraquidiano , Glicoproteínas de Membrana/genética , Receptores Imunológicos/genética
9.
J Magn Reson Imaging ; 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37915245

RESUMO

BACKGROUND: There is a lack of automated tools for the segmentation and quantification of neuromelanin (NM) and iron in the nigrosome-1 (N1). Existing tools evaluate the N1 sign, i.e., the presence or absence of the "swallow-tail" in iron-sensitive MRI, or globally analyze the MRI signal in an area containing the N1, without providing a volumetric delineation. PURPOSE: Present an automated method to segment the N1 and quantify differences in N1's NM and iron content between Parkinson's disease (PD) patients and healthy controls (HCs). Study whether N1 degeneration is clinically related to PD and could be used as a biomarker of the disease. STUDY TYPE: Prospective. SUBJECTS: Seventy-one PD (65.3 ± 10.3 years old, 34 female/37 male); 30 HC (62.7 ± 7.8 years old, 17 female/13 male). FIELD STRENGTH/SEQUENCE: 3 T Anatomical T1-weighted MPRAGE, NM-MRI T1-weighted gradient with magnetization transfer, susceptibility-weighted imaging (SWI). ASSESSMENT: N1 was automatically segmented in SWI images using a multi-image atlas, populated with healthy N1 structures manually annotated by a neurologist. Relative NM and iron content were quantified and their diagnostic performance assessed and compared with the substantia nigra pars compacta (SNc). The association between image parameters and clinically relevant variables was studied. STATISTICAL TESTS: Nonparametric tests were used (Mann-Whitney's U, chi-square, and Friedman tests) at P = 0.05. RESULTS: N1's relative NM content decreased and relative iron content increased in PD patients compared with HCs (NM-CRHC = 22.55 ± 1.49; NM-CRPD = 19.79 ± 1.92; NM-nVolHC = 2.69 × 10-5 ± 1.02 × 10-5 ; NM-nVolPD = 1.18 × 10-5 ± 0.96 × 10-5 ; Iron-CRHC = 10.51 ± 2.64; Iron-CRPD = 19.35 ± 7.88; Iron-nVolHC = 0.72 × 10-5 ± 0.81 × 10-5 ; Iron-nVolPD = 2.82 × 10-5 ± 2.04 × 10-5 ). Binary logistic regression analyses combining N1 and SNc image parameters yielded a top AUC = 0.955. Significant correlation was found between most N1 parameters and both disease duration (ρNM-CR = -0.31; ρiron-CR = 0.43; ρiron-nVol = 0.46) and the motor status (ρNM-nVol = -0.27; ρiron-CR = 0.33; ρiron-nVol = 0.28), suggesting NM reduction along with iron accumulation in N1 as the disease progresses. DATA CONCLUSION: This method provides a fully automatic N1 segmentation, and the analyses performed reveal that N1 relative NM and iron quantification improves diagnostic performance and suggest a relative NM reduction along with a relative iron accumulation in N1 as the disease progresses. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 1.

10.
medRxiv ; 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37790572

RESUMO

Background: Levodopa-induced dyskinesia (LID) is a common adverse effect of levodopa, one of the main therapeutics used to treat the motor symptoms of Parkinson's disease (PD). Previous evidence suggests a connection between LID and a disruption of the dopaminergic system as well as genes implicated in PD, including GBA1 and LRRK2. Objectives: To investigate the effects of genetic variants on risk and time to LID. Methods: We performed a genome-wide association study (GWAS) and analyses focused on GBA1 and LRRK2 variants. We also calculated polygenic risk scores including risk variants for PD and variants in genes involved in the dopaminergic transmission pathway. To test the influence of genetics on LID risk we used logistic regression, and to examine its impact on time to LID we performed Cox regression including 1,612 PD patients with and 3,175 without LID. Results: We found that GBA1 variants were associated with LID risk (OR=1.65, 95% CI=1.21-2.26, p=0.0017) and LRRK2 variants with reduced time to LID onset (HR=1.42, 95% CI=1.09-1.84, p=0.0098). The fourth quartile of the PD PRS was associated with increased LID risk (ORfourth_quartile=1.27, 95% CI=1.03-1.56, p=0.0210). The third and fourth dopamine pathway PRS quartiles were associated with a reduced time to development of LID (HRthird_quartile=1.38, 95% CI=1.07-1.79, p=0.0128; HRfourth_quartile=1.38, 95% CI=1.06-1.78, p=0.0147). Conclusions: This study suggests that variants implicated in PD and in the dopaminergic transmission pathway play a role in the risk/time to develop LID. Further studies will be necessary to examine how these findings can inform clinical care.

11.
Parkinsonism Relat Disord ; 115: 105832, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37678102

RESUMO

INTRODUCTION: Isolated REM sleep behavior disorder (IRBD) represents an early manifestation of the synucleinopathies Parkinson's disease (PD) and dementia with Lewy bodies (DLB). Aggregation of abnormal α-synuclein and its increased expression in the brain is crucial in the development of the synucleinopathies. Whereas α-synuclein gene (SNCA) transcripts are overexpressed in brain, a concomitant reduction occurs in blood of DLB patients. We assessed whether this decrease is also detectable in IRBD. METHODS: 108 IRBD patients and 149 controls were included of which 29 IRBD and 32 control cases were available for expression studies. Expression of SNCAtv1, SNCAtv2, SNCAtv3 and SNCA126 isoforms, and GBA were determined by real-time PCR. Genotype distribution of SNCA SNPs, rs356219 and rs2736990, and correlation with SNCA expression was analyzed. RESULTS: Expression of all SNCA transcripts was reduced in IRBD blood whereas GBA expression did not change. SNCAtv3 expression correlated inversely with IRBD duration, being lower in patients with longer follow-up. Rs356219-AA genotype frequency was increased in IRBD patients who later developed PD and DLB. Rs2736990-CC frequency was increased among IRBD cases who remained disease-free. No correlation was observed between rs356219 and rs2736990 genotypes and SNCA transcript levels. CONCLUSION: SNCA transcript expression is decreased in blood in IRBD, and levels decrease with IRBD duration. Our findings indicate that changes in SNCA expression occur in the earliest stages of the synucleinopathies before motor and cognitive symptoms become apparent.

13.
NPJ Parkinsons Dis ; 9(1): 107, 2023 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-37422510

RESUMO

Common and rare variants in the LRRK2 locus are associated with Parkinson's disease (PD) risk, but the downstream effects of these variants on protein levels remain unknown. We performed comprehensive proteogenomic analyses using the largest aptamer-based CSF proteomics study to date (7006 aptamers (6138 unique proteins) in 3107 individuals). The dataset comprised six different and independent cohorts (five using the SomaScan7K (ADNI, DIAN, MAP, Barcelona-1 (Pau), and Fundació ACE (Ruiz)) and the PPMI cohort using the SomaScan5K panel). We identified eleven independent SNPs in the LRRK2 locus associated with the levels of 25 proteins as well as PD risk. Of these, only eleven proteins have been previously associated with PD risk (e.g., GRN or GPNMB). Proteome-wide association study (PWAS) analyses suggested that the levels of ten of those proteins were genetically correlated with PD risk, and seven were validated in the PPMI cohort. Mendelian randomization analyses identified GPNMB, LCT, and CD68 causal for PD and nominate one more (ITGB2). These 25 proteins were enriched for microglia-specific proteins and trafficking pathways (both lysosome and intracellular). This study not only demonstrates that protein phenome-wide association studies (PheWAS) and trans-protein quantitative trail loci (pQTL) analyses are powerful for identifying novel protein interactions in an unbiased manner, but also that LRRK2 is linked with the regulation of PD-associated proteins that are enriched in microglial cells and specific lysosomal pathways.

14.
Neurol Genet ; 9(4): e200079, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37293291

RESUMO

Background and Objectives: Most patients with amyotrophic lateral sclerosis (ALS) lack a monogenic mutation. This study evaluates ALS cumulative genetic risk in an independent Michigan and Spanish replication cohort using polygenic scores. Methods: Participant samples from University of Michigan were genotyped and assayed for the chromosome 9 open reading frame 72 hexanucleotide expansion. Final cohort size was 219 ALS and 223 healthy controls after genotyping and participant filtering. Polygenic scores excluding the C9 region were generated using an independent ALS genome-wide association study (20,806 cases, 59,804 controls). Adjusted logistic regression and receiver operating characteristic curves evaluated the association and classification between polygenic scores and ALS status, respectively. Population attributable fractions and pathway analyses were conducted. An independent Spanish study sample (548 cases, 2,756 controls) was used for replication. Results: Polygenic scores constructed from 275 single-nucleotide variation (SNV) had the best model fit in the Michigan cohort. An SD increase in ALS polygenic score associated with 1.28 (95% CI 1.04-1.57) times higher odds of ALS with area under the curve of 0.663 vs a model without the ALS polygenic score (p value = 1 × 10-6). The population attributable fraction of the highest 20th percentile of ALS polygenic scores, relative to the lowest 80th percentile, was 4.1% of ALS cases. Genes annotated to this polygenic score enriched for important ALS pathomechanisms. Meta-analysis with the Spanish study, using a harmonized 132 single nucleotide variation polygenic score, yielded similar logistic regression findings (odds ratio: 1.13, 95% CI 1.04-1.23). Discussion: ALS polygenic scores can account for cumulative genetic risk in populations and reflect disease-relevant pathways. If further validated, this polygenic score will inform future ALS risk models.

15.
Res Sq ; 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37333177

RESUMO

Brain metabolism perturbation can contribute to traits and diseases. We conducted the first large-scale CSF and brain genome-wide association studies, which identified 219 independent associations (59.8% novel) for 144 CSF metabolites and 36 independent associations (55.6% novel) for 34 brain metabolites. Most of the novel signals (97.7% and 70.0% in CSF and brain) were tissue specific. We also integrated MWAS-FUSION approaches with Mendelian Randomization and colocalization to identify causal metabolites for 27 brain and human wellness phenotypes and identified eight metabolites to be causal for eight traits (11 relationships). Low mannose level was causal to bipolar disorder and as dietary supplement it may provide therapeutic benefits. Low galactosylglycerol level was found causal to Parkinson's Disease (PD). Our study expanded the knowledge of MQTL in central nervous system, provided insights into human wellness, and successfully demonstrates the utility of combined statistical approaches to inform interventions.

16.
Res Sq ; 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37333337

RESUMO

The integration of quantitative trait loci (QTL) with disease genome-wide association studies (GWAS) has proven successful at prioritizing candidate genes at disease-associated loci. QTL mapping has mainly been focused on multi-tissue expression QTL or plasma protein QTL (pQTL). Here we generated the largest-to-date cerebrospinal fluid (CSF) pQTL atlas by analyzing 7,028 proteins in 3,107 samples. We identified 3,373 independent study-wide associations for 1,961 proteins, including 2,448 novel pQTLs of which 1,585 are unique to CSF, demonstrating unique genetic regulation of the CSF proteome. In addition to the established chr6p22.2-21.32 HLA region, we identified pleiotropic regions on chr3q28 near OSTN and chr19q13.32 near APOE that were enriched for neuron-specificity and neurological development. We also integrated this pQTL atlas with the latest Alzheimer's disease (AD) GWAS through PWAS, colocalization and Mendelian Randomization and identified 42 putative causal proteins for AD, 15 of which have drugs available. Finally, we developed a proteomics-based risk score for AD that outperforms genetics-based polygenic risk scores. These findings will be instrumental to further understand the biology and identify causal and druggable proteins for brain and neurological traits.

17.
JAMA Netw Open ; 6(5): e2313734, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37195665

RESUMO

Importance: An estimated 40% of dementia is potentially preventable by modifying 12 risk factors throughout the life course. However, robust evidence for most of these risk factors is lacking. Effective interventions should target risk factors in the causal pathway to dementia. Objective: To comprehensively disentangle potentially causal aspects of modifiable risk factors for Alzheimer disease (AD) to inspire new drug targeting and improved prevention. Design, Setting, and Participants: This genetic association study was conducted using 2-sample univariable and multivariable mendelian randomization. Independent genetic variants associated with modifiable risk factors were selected as instrumental variables from genomic consortia. Outcome data for AD were obtained from the European Alzheimer & Dementia Biobank (EADB), generated on August 31, 2021. Main analyses were conducted using the EADB clinically diagnosed end point data. All analyses were performed between April 12 and October 27, 2022. Exposures: Genetically determined modifiable risk factors. Main Outcomes and Measures: Odds ratios (ORs) and 95% CIs for AD were calculated per 1-unit change of genetically determined risk factors. Results: The EADB-diagnosed cohort included 39 106 participants with clinically diagnosed AD and 401 577 control participants without AD. The mean age ranged from 72 to 83 years for participants with AD and 51 to 80 years for control participants. Among participants with AD, 54% to 75% were female, and among control participants, 48% to 60% were female. Genetically determined high-density lipoprotein (HDL) cholesterol concentrations were associated with increased odds of AD (OR per 1-SD increase, 1.10 [95% CI, 1.05-1.16]). Genetically determined high systolic blood pressure was associated with increased risk of AD after adjusting for diastolic blood pressure (OR per 10-mm Hg increase, 1.22 [95% CI, 1.02-1.46]). In a second analysis to minimize bias due to sample overlap, the entire UK Biobank was excluded from the EADB consortium; odds for AD were similar for HDL cholesterol (OR per 1-SD unit increase, 1.08 [95% CI, 1.02-1.15]) and systolic blood pressure after adjusting for diastolic blood pressure (OR per 10-mm Hg increase, 1.23 [95% CI, 1.01-1.50]). Conclusions and Relevance: This genetic association study found novel genetic associations between high HDL cholesterol concentrations and high systolic blood pressure with higher risk of AD. These findings may inspire new drug targeting and improved prevention implementation.


Assuntos
Doença de Alzheimer , Humanos , Feminino , Idoso , Idoso de 80 Anos ou mais , Masculino , Doença de Alzheimer/epidemiologia , Doença de Alzheimer/genética , HDL-Colesterol , Fatores de Risco , Causalidade
18.
NPJ Parkinsons Dis ; 9(1): 62, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37061532

RESUMO

Neuromelanin (NM) loss in substantia nigra pars compacta (SNc) and locus coeruleus (LC) reflects neuronal death in Parkinson's disease (PD). Since genetically-determined PD shows varied clinical expressivity, we wanted to accurately quantify and locate brainstem NM and iron, to discover whether specific MRI patterns are linked to Leucine-rich repeat kinase 2 G2019S PD (LRRK2-PD) or idiopathic Parkinson's disease (iPD). A 3D automated MRI atlas-based segmentation pipeline (3D-ABSP) for NM/iron-sensitive MRI images topographically characterized the SNc, LC, and red nucleus (RN) neuronal loss and calculated NM/iron contrast ratio (CR) and normalized volume (nVol). Left-side NM nVol was larger in all groups. PD had lower NM CR and nVol in ventral-caudal SNc, whereas iron increased in lateral, medial-rostral, and caudal SNc. The SNc NM CR reduction was associated with psychiatric symptoms. LC CR and nVol discriminated better among subgroups: LRRK2-PD had similar LC NM CR and nVol as that of controls, and larger LC NM nVol and RN iron CR than iPD. PD showed higher iron SNc nVol than controls, especially among LRRK2-PD. ROC analyses showed an AUC > 0.92 for most pairwise subgroup comparisons, with SNc NM being the best discriminator between HC and PD. NM measures maintained their discriminator power considering the subgroup of PD patients with less than 5 years of disease duration. The SNc iron CR and nVol increase was associated with longer disease duration in PD patients. The 3D-ABSP sensitively identified NM and iron MRI patterns strongly correlated with phenotypic PD features.

19.
J Clin Neurol ; 19(4): 344-357, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36647231

RESUMO

BACKGROUND AND PURPOSE: Visual hallucinations (VH) and subjective cognitive complaints (SCC) are associated with cognitive impairment (CI) in Parkinson's disease. Our aims were to determine the association between VH and SCC and the risk of CI development in a cohort of patients with Parkinson's disease and normal cognition (PD-NC). METHODS: Patients with PD-NC (total score of >80 on the Parkinson's Disease Cognitive Rating Scale [PD-CRS]) recruited from the Spanish COPPADIS cohort from January 2016 to November 2017 were followed up after 2 years. Subjects with a score of ≥1 on domain 5 and item 13 of the Non-Motor Symptoms Scale at baseline (V0) were considered as "with SCC" and "with VH," respectively. CI at the 2-year follow-up (plus or minus 1 month) (V2) was defined as a PD-CRS total score of <81. RESULTS: At V0 (n=376, 58.2% males, age 61.14±8.73 years [mean±SD]), the frequencies of VH and SCC were 13.6% and 62.2%, respectively. VH were more frequent in patients with SCC than in those without: 18.8% (44/234) vs 4.9% (7/142), p<0.0001. At V2, 15.2% (57/376) of the patients had developed CI. VH presenting at V0 was associated with a higher risk of CI at V2 (odds ratio [OR]=2.68, 95% confidence interval=1.05-6.83, p=0.0.039) after controlling for the effects of age, disease duration, education, medication, motor and nonmotor status, mood, and PD-CRS total score at V0. Although SCC were not associated with CI at V2, presenting both VH and SCC at V0 increased the probability of having CI at V2 (OR=3.71, 95% confidence interval=1.36-10.17, p=0.011). CONCLUSIONS: VH were associated with the development of SCC and CI at the 2-year follow-up in patients with PD-NC.

20.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36674414

RESUMO

Mosaic loss of chromosome Y (mLOY) is a common ageing-related somatic event and has been previously associated with Alzheimer's disease (AD). However, mLOY estimation from genotype microarray data only reflects the mLOY degree of subjects at the moment of DNA sampling. Therefore, mLOY phenotype associations with AD can be severely age-confounded in the context of genome-wide association studies. Here, we applied Mendelian randomisation to construct an age-independent mLOY polygenic risk score (mloy-PRS) using 114 autosomal variants. The mloy-PRS instrument was associated with an 80% increase in mLOY risk per standard deviation unit (p = 4.22 × 10-20) and was orthogonal with age. We found that a higher genetic risk for mLOY was associated with faster progression to AD in men with mild cognitive impairment (hazard ratio (HR) = 1.23, p = 0.01). Importantly, mloy-PRS had no effect on AD conversion or risk in the female group, suggesting that these associations are caused by the inherent loss of the Y chromosome. Additionally, the blood mLOY phenotype in men was associated with increased cerebrospinal fluid levels of total tau and phosphorylated tau181 in subjects with mild cognitive impairment and dementia. Our results strongly suggest that mLOY is involved in AD pathogenesis.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Masculino , Feminino , Doença de Alzheimer/genética , Cromossomos Humanos Y/genética , Estudo de Associação Genômica Ampla , Mosaicismo , Fatores de Risco , Disfunção Cognitiva/genética , Proteínas tau/genética , Biomarcadores , Peptídeos beta-Amiloides/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...